MATH 821, Spring 2013, Lecture 20

Karen Yeats
(Scribe: Amy Wiebe)

March 28, 2013

1 Robinson-Schensted-Knuth

Recall from Lecture 19 what it meant to insert i into tableau T :
To begin, current row is top row
(1) Find smallest $j>i$ in the current row, if it exists.
(2) If no such j exists, add a new box to the end of current row and put in it.
(3) Otherwise, replace j by i, replace current row by next row and go to (1)

Theorem 1. There is a bijection between length n lists of pairs of positive integers in lexicographic order (equivalent to multisets of such pairs) and pairs (P, Q) of semistandard Young tableaux of the same shape λ, where λ is a partition of n.

For semistandard Young tableaux, entries may not be distinct, so we need to adjust the insertion routine, as follows:
To begin, current row is top row
(1) Find leftmost $j>i$ in the current row, if it exists.
(2) If no such j exists, add a new box to the end of current row and put i in it.
(3) Otherwise, replace j by i, replace current row by next row and go to (1)

The Robinson-Schensted-Knuth algorithm:

Given a list L of pairs of positive integers in lexicographic order
Set P_{0}, Q_{0} to be empty tableaux
for $\left[\begin{array}{l}i \\ j\end{array}\right]$ running through L with index k

- Insert j into P_{k-1}, and call the result P_{k}.
- In the position where P_{k}, P_{k-1} differ in shape, add a new box to Q_{k-1} and put i in it. Call the result Q_{k}.

Return $P_{|L|}, Q_{|Q|}$.

Example.

$$
\left.\begin{array}{llllllll}
L & & \left(\begin{array}{llllll}
1 & 1 & 1 & 2 & 2 & 3
\end{array}\right. & 3 \\
1 & 3 & 3 & 2 & 2 & 1 & 3
\end{array}\right)
$$

Now it's not as obvious that insertion maintains the tableau property, nor that it's reversible. Let's check!

Lemma 1. Say we insert i into a semistandard Young tableau T, and say that the bumped entry in row j was b_{j} originally in column c_{j}. Then

$$
\begin{aligned}
c_{1} \geq c_{2} \geq \cdots \geq c_{n} \\
i<b_{1}<b_{2}<\cdots<b_{n}
\end{aligned}
$$

Proof. The inequality on the $b s$ is by definition of insertion.
For the c_{j}, consider the element in row $j+1$, column c_{j}. Either it doesn't exist, or it is $>b_{j}$. Then when b_{j} is placed in row $j+1$ it cannot be placed to the right of this box, so $c_{j+1} \leq c_{j}$.

Corollary 2. Inserting in a semistandard Young tableau yields a semistandard Young tableau.
Proof. By construction, the rows are weakly increasing. By Lemma 1, the element in row j, column c_{j+1} is $<b_{j}$, because it always was, or it was what bumped b_{j}. The element in row $j+2, \mathrm{col} c_{j+1}$ is $>b_{j+1}$ or it is b_{j+1} after being bumped, which in either case is $>b_{j}$.

Lemma 2. The copies of i in Q are placed in Q strictly from left to right over the course of the algorithm.

Proof. Say the input to the algorithm was $\left(\begin{array}{cccccc}\cdots & i & i & \cdots & i & \cdots \\ & j_{r} \leq & j_{r+1} \leq & \cdots & j_{s}\end{array}\right)$. Let the sequence of boxes involved in the bumps when inserting a given element be called the bumping path. The bumping path for j_{t} in P_{t-1} lies strictly to the right of the bumping path for j_{t-1}. This is because $j_{t} \geq j_{t-1}$, so j_{t} must bump something further to the right than j_{t-1}, so on the next row $b_{t, 1} \geq b_{t-1,1}$. Furthermore, the bumping path for j_{t} will terminate in a row no lower than the bumping path for j_{t-1}, because in the row of P_{t-1} where j_{t-1} terminated, the last box is $b_{t-1, m}$ for some m, so either the path for b_{t} already terminated or it will also terminate in this row since $b_{t, m} \geq b_{t-1, m}$.

Corollary 3. Q_{k} is a semistandard Young tableau at the end of each step of the algorithm.
Proof. When i is added to Q_{k-1}, the content of Q_{k-1} consists of elements $<i$ and possibly copies of i. By Lemma 2 any copies of i are in distinct columns from the column where the new i is inserted.

Corollary 4. The Robinson-Schensted-Knuth algorithm is reversible.
Proof. By Lemma 2, we can identify the order in which the boxes containing i were inserted. Then we can reverse in the same manner as we did for the Robinson-Schensted algorithm.

2 Littlewood-Richardson coefficients

Theorem 5.

$$
\prod_{i, j=1}^{\infty}\left(\frac{1}{1-t x_{i} y_{i}}\right)=\sum_{n=0}^{\infty} \sum_{\lambda \text { partition of } n} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{y}) t^{n}
$$

Proof. This is the Robinson-Schensted-Knuth correspondence phrased in terms of generating functions.

LHS: for a single term we have

$$
\frac{1}{1-t x_{i} y_{i}}=1+t x_{i} y_{i}+t^{2} x_{i}^{2} y_{i}^{2}+\cdots
$$

View $t^{k} x_{i}^{k} y_{j}^{k}$ as saying there are k copies of $\left[\begin{array}{l}i \\ j\end{array}\right]$ in the list of pairs, or equivalently there is a k in the i, j position in the matrix of nonnegative integers. So

$$
\prod_{i, j=1}^{\infty} \frac{1}{1-t x_{i} y_{i}}
$$

counts all multisets of pairs of positive integers, equivalently all matrices with nonnegative integer entries, only finitely many of which are nonzero.

RHS: by definition of Schur functions we have

$$
\sum_{n=0}^{\infty} \sum_{\lambda \text { partition of } n} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{y}) t^{n}=\sum_{n=0}^{\infty} \sum_{\substack{P, Q \text { semistandard } \\ \text { shape } e \text { tableaux, } \\ \lambda \text { partition of } n}} t^{n} \underline{x}^{\operatorname{cont}(P)} \underline{y}^{\operatorname{cont}(Q)} .
$$

So by the Robinson-Schensted-Knuth correspondence, the LHS and RHS are equal.
Corollary 6. Write

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

and

$$
\Delta\left(s_{\lambda}\right)=\sum_{\mu, \nu} \hat{c}_{\mu, \nu}^{\lambda} s_{\mu} \otimes s_{\nu} .
$$

Then $c_{\mu, \nu}^{\lambda}=\hat{c}_{\mu, \nu}^{\lambda}$.
Proof. By Theorem 5,

$$
\begin{align*}
\left(\prod_{i, j=1}^{\infty}\left(\frac{1}{1-t x_{i} z_{i}}\right)\right)\left(\prod_{i, j=1}^{\infty}\left(\frac{1}{1-t y_{i} z_{i}}\right)\right) & =\left(\sum_{n=0}^{\infty} \sum_{\lambda \text { partition of } n} s_{\lambda}(\underline{x}) s_{\lambda}(\underline{z}) t^{n}\right)\left(\sum_{n=0}^{\infty} \sum_{\lambda \text { partition of } n} s_{\lambda}(\underline{y}) s_{\lambda}(\underline{z}) t^{n}\right) \\
& =\sum_{\mu, \nu} t^{|\mu|+|\nu|} s_{\mu}(\underline{x}) s_{\nu}(\underline{y}) s_{\mu}(\underline{z}) s_{\nu}(\underline{z}) \\
& =\sum_{\mu, \nu} t^{|\mu|+|\nu|} s_{\mu}(\underline{x}) s_{\nu}(\underline{y}) \sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}(\underline{z}) . \tag{1}
\end{align*}
$$

Now

$$
\begin{array}{rlrl}
\left(\prod_{i, j=1}^{\infty}\left(\frac{1}{1-t x_{i} z_{i}}\right)\right)\left(\prod_{i, j=1}^{\infty}\left(\frac{1}{1-t y_{i} z_{i}}\right)\right) & =\prod_{\substack{w_{i} \text { running } \\
\text { over }(x, y), z_{i} \text { running } \\
\text { over } \underline{z}}} \frac{1}{1-t w_{i} z_{i}} & \\
& =\sum_{\lambda} t^{|\lambda|} s_{\lambda}(\underline{x}, \underline{y}) s_{\lambda}(\underline{z}), & & \text { by Theorem } 5 \\
& =\sum_{\lambda} t^{|\lambda|} \sum_{\mu, \nu} \hat{c}_{\mu, \nu}^{\lambda} s_{\mu}(\underline{x}) s_{\nu}(\underline{y}) s_{\lambda}(\underline{z}), & \text { as } s_{\lambda}(\underline{x}, \underline{y})=\Delta\left(s_{\lambda}\right) \tag{2}
\end{array}
$$

and taking the coefficient of $s_{\mu}(\underline{x}) s_{\nu}(\underline{y}) s_{\lambda}(\underline{z})$ in (1) and (2), (and noting that $|\mu|+|\nu|=|\lambda|$ since \cdot and Δ are graded) we get $c_{\mu, \nu}^{\lambda}=\hat{c}_{\mu, \nu}^{\lambda}$.

As a consequence, we get that Λ is self-dual.
The $c_{\mu, \nu}^{\lambda}$ are called Littlewood-Richardson coefficients. They have combinatorial interpretations, etc., but that's another story.

3 What did we do this semester?

An ecclectic collection of combinatorics, classic and new.

The End!

