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1 Robinson-Schensted-Knuth

Recall from Lecture 19 what it meant to insert i into tableau T :
To begin, current row is top row

(1) Find smallest j > i in the current row, if it exists.

(2) If no such j exists, add a new box to the end of current row and put i in

it.

(3) Otherwise, replace j by i, replace current row by next row and go to (1)

Theorem 1. There is a bijection between length n lists of pairs of positive integers in lexico-
graphic order (equivalent to multisets of such pairs) and pairs (P,Q) of semistandard Young
tableaux of the same shape λ, where λ is a partition of n.

For semistandard Young tableaux, entries may not be distinct, so we need to adjust the
insertion routine, as follows:
To begin, current row is top row

(1) Find leftmost j > i in the current row, if it exists.

(2) If no such j exists, add a new box to the end of current row and put i in

it.

(3) Otherwise, replace j by i, replace current row by next row and go to (1)

The Robinson-Schensted-Knuth algorithm:

Given a list L of pairs of positive integers in lexicographic order

Set P0, Q0 to be empty tableaux

for

[
i
j

]
running through L with index k
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- Insert j into Pk−1, and call the result Pk.

- In the position where Pk, Pk−1 differ in shape, add a new box to Qk−1 and

put i in it. Call the result Qk.

Return P|L|, Q|Q|.

Example.

L =

(
1 1 1 2 2 3 3
1 3 3 2 2 1 3

)
k i j Pk Qk

1 1 1 1 1

2 1 3 1 3 1 1

3 1 3 1 3 3 1 1 1

4 2 2
1 2 3
3

1 1 1
2

5 2 2
1 2 2
3 3

1 1 1
2 2

6 3 1
1 1 2
2 3
3

1 1 1
2 2
3

7 3 3
1 1 2 3
2 3
3

1 1 1 3
2 2
3

Now it’s not as obvious that insertion maintains the tableau property, nor that it’s
reversible. Let’s check!

Lemma 1. Say we insert i into a semistandard Young tableau T , and say that the bumped
entry in row j was bj originally in column cj. Then

c1 ≥ c2 ≥ · · · ≥ cn

i < b1 < b2 < · · · < bn

Proof. The inequality on the bs is by definition of insertion.
For the cj, consider the element in row j + 1, column cj. Either it doesn’t exist, or it is

> bj. Then when bj is placed in row j + 1 it cannot be placed to the right of this box, so
cj+1 ≤ cj.
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Corollary 2. Inserting in a semistandard Young tableau yields a semistandard Young tableau.

Proof. By construction, the rows are weakly increasing. By Lemma 1, the element in row j,
column cj+1 is < bj, because it always was, or it was what bumped bj. The element in row
j + 2, col cj+1 is > bj+1 or it is bj+1 after being bumped, which in either case is > bj.

Lemma 2. The copies of i in Q are placed in Q strictly from left to right over the course of
the algorithm.

Proof. Say the input to the algorithm was

(
· · · i i · · · i · · ·

jr ≤ jr+1 ≤ · · · js

)
. Let the se-

quence of boxes involved in the bumps when inserting a given element be called the bumping
path. The bumping path for jt in Pt−1 lies strictly to the right of the bumping path for jt−1.
This is because jt ≥ jt−1, so jt must bump something further to the right than jt−1, so on
the next row bt,1 ≥ bt−1,1. Furthermore, the bumping path for jt will terminate in a row no
lower than the bumping path for jt−1, because in the row of Pt−1 where jt−1 terminated,
the last box is bt−1,m for some m, so either the path for bt already terminated or it will also
terminate in this row since bt,m ≥ bt−1,m.

Corollary 3. Qk is a semistandard Young tableau at the end of each step of the algorithm.

Proof. When i is added to Qk−1, the content of Qk−1 consists of elements < i and possibly
copies of i. By Lemma 2 any copies of i are in distinct columns from the column where the
new i is inserted.

Corollary 4. The Robinson-Schensted-Knuth algorithm is reversible.

Proof. By Lemma 2, we can identify the order in which the boxes containing i were inserted.
Then we can reverse in the same manner as we did for the Robinson-Schensted algorithm.

2 Littlewood-Richardson coefficients

Theorem 5.
∞∏

i,j=1

(
1

1− txiyi

)
=
∞∑
n=0

∑
λ partition of n

sλ(x)sλ(y)tn

Proof. This is the Robinson-Schensted-Knuth correspondence phrased in terms of generating
functions.

LHS: for a single term we have

1

1− txiyi
= 1 + txiyi + t2x2i y

2
i + · · · .

3



View tkxki y
k
j as saying there are k copies of

[
i
j

]
in the list of pairs, or equivalently there is

a k in the i, j position in the matrix of nonnegative integers. So

∞∏
i,j=1

1

1− txiyi

counts all multisets of pairs of positive integers, equivalently all matrices with nonnegative
integer entries, only finitely many of which are nonzero.

RHS: by definition of Schur functions we have

∞∑
n=0

∑
λ partition of n

sλ(x)sλ(y)tn =
∞∑
n=0

∑
P,Q semistandard
shape λ tableaux,
λ partition of n

tnxcont(P )ycont(Q).

So by the Robinson-Schensted-Knuth correspondence, the LHS and RHS are equal.

Corollary 6. Write

sµsν =
∑
λ

cλµ,νsλ

and
∆(sλ) =

∑
µ,ν

ĉλµ,νsµ ⊗ sν .

Then cλµ,ν = ĉλµ,ν.

Proof. By Theorem 5,(
∞∏

i,j=1

(
1

1− txizi

))( ∞∏
i,j=1

(
1

1− tyizi

))
=

(
∞∑
n=0

∑
λ partition of n

sλ(x)sλ(z)tn

)(
∞∑
n=0

∑
λ partition of n

sλ(y)sλ(z)tn

)
=

∑
µ,ν

t|µ|+|ν|sµ(x)sν(y)sµ(z)sν(z)

=
∑
µ,ν

t|µ|+|ν|sµ(x)sν(y)
∑
λ

cλµ,νsλ(z). (1)

Now(
∞∏

i,j=1

(
1

1− txizi

))( ∞∏
i,j=1

(
1

1− tyizi

))
=

∏
wi running
over (x, y),

zirunning
over z

1

1− twizi

=
∑
λ

t|λ|sλ(x, y)sλ(z), by Theorem 5

=
∑
λ

t|λ|
∑
µ,ν

ĉλµ,νsµ(x)sν(y)sλ(z), as sλ(x, y) = ∆(sλ) (2)
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and taking the coefficient of sµ(x)sν(y)sλ(z) in (1) and (2), (and noting that |µ|+ |ν| = |λ|
since · and ∆ are graded) we get cλµ,ν = ĉλµ,ν .

As a consequence, we get that Λ is self-dual.
The cλµ,ν are called Littlewood-Richardson coefficients. They have combinatorial interpreta-
tions, etc., but that’s another story.

3 What did we do this semester?

An ecclectic collection of combinatorics, classic and new.

combinatorial
specifications

asymptotics

Pólya cycle

index polys

Enumeration

combinatorial
Dyson-Schwinger

equations

partitions

renormalization
Hopf algebras

combinatorial
Hopf algebras

symmetric
functions

Kreimer-style quantum field theory
aka stuff Karen does

Algebra, representation theory

The End!
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