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1 Robinson-Schensted-Knuth

Recall from Lecture 19 what it meant to insert 7 into tableau T
To begin, current row is top row

(1) Find smallest j > ¢ in the current row, if it exists.

(2) If no such j exists, add a new box to the end of current row and put ¢ in
it.

(3) Otherwise, replace j by ¢, replace current row by next row and go to (1)

Theorem 1. There is a bijection between length n lists of pairs of positive integers in lexico-
graphic order (equivalent to multisets of such pairs) and pairs (P, Q) of semistandard Young
tableaux of the same shape X\, where X\ is a partition of n.

For semistandard Young tableaux, entries may not be distinct, so we need to adjust the
insertion routine, as follows:
To begin, current row is top row

(1) Find leftmost j > i in the current row, if it exists.

(2) If no such j exists, add a new box to the end of current row and put 7 in
it.

(3) Otherwise, replace j by i, replace current row by next row and go to (1)

The Robinson-Schensted-Knuth algorithm:

Given a list L of pairs of positive integers in lexicographic order
Set Fy, )y to be empty tableaux

for ; running through L with index k



- Insert j into P, _;, and call the result F;.

- In the position where Py, P,_; differ in shape, add a new box to (J;_; and
put ¢ in it. Call the result Q).

Return P|L‘, Q|Q‘ .
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Now it’s not as obvious that insertion maintains the tableau property, nor that it’s
reversible. Let’s check!

Lemma 1. Say we insert i into a semistandard Young tableau T, and say that the bumped
entry in row j was b; originally in column c;. Then

C1>C > >0y
T < by<by<---<b,

Proof. The inequality on the bs is by definition of insertion.

For the c;, consider the element in row j + 1, column ¢;. Either it doesn’t exist, or it is
> b;. Then when b; is placed in row j + 1 it cannot be placed to the right of this box, so
Cjt1 S Cj. L]



Corollary 2. Inserting in a semistandard Young tableau yields a semistandard Young tableau.

Proof. By construction, the rows are weakly increasing. By Lemma 1, the element in row 7,
column c;y; is < b;, because it always was, or it was what bumped b;. The element in row
J+2,col ¢ji1 is > by or it is bjy; after being bumped, which in either case is > b;. O

Lemma 2. The copies of i in Q are placed in Q) strictly from left to right over the course of
the algorithm.

jr S ,errl S ,js
quence of boxes involved in the bumps when inserting a given element be called the bumping
path. The bumping path for j; in P,_; lies strictly to the right of the bumping path for j;_;.
This is because j; > j;_1, so j; must bump something further to the right than j;_1, so on
the next row b, ; > b;—1 ;. Furthermore, the bumping path for j; will terminate in a row no
lower than the bumping path for j;,_;, because in the row of P,_; where j;_; terminated,
the last box is b;_; ,, for some m, so either the path for b; already terminated or it will also
terminate in this row since by, > bi_1 .- O

Proof. Say the input to the algorithm was ( o ). Let the se-

Corollary 3. Q) is a semistandard Young tableau at the end of each step of the algorithm.

Proof. When i is added to Qx_1, the content of ();_; consists of elements < ¢ and possibly
copies of 7. By Lemma 2 any copies of 7 are in distinct columns from the column where the
new 1 is inserted. O

Corollary 4. The Robinson-Schensted-Knuth algorithm is reversible.

Proof. By Lemma 2, we can identify the order in which the boxes containing ¢ were inserted.
Then we can reverse in the same manner as we did for the Robinson-Schensted algorithm. [J

2 Littlewood-Richardson coefficients

Theorem 5.

ﬁ (1_;%) = i . s@sayt”

1,7=1 n=0 X partition of n

Proof. This is the Robinson-Schensted-Knuth correspondence phrased in terms of generating
functions.
LHS: for a single term we have

=1+ twy Py
1 —txy;
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View t*zjy} as saying there are k copies of [ ; ]in the list of pairs, or equivalently there is

a k in the 7, j position in the matrix of nonnegative integers. So

o0
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H 1 —tay;

ij=1

counts all multisets of pairs of positive integers, equivalently all matrices with nonnegative
integer entries, only finitely many of which are nonzero.
RHS: by definition of Schur functions we have

io: Z S\ (Q)SA (g)t" — f: Z tnzcont(P)gcont(Q) ]

n=0 X partition of n n=0 P, Q semistandard
shape A tableaux,
A partition of n

So by the Robinson-Schensted-Knuth correspondence, the LHS and RHS are equal. O]

_ A
SuSy = E CouuSA
A

Corollary 6. Write

and

A(sy) = Z éﬁjysu ® Sy
v

A
12

Proof. By Theorem 5,
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Now
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and taking the coefficient of s,(z)s,(y)sr(z) in (1) and (2), (and noting that x| + || = ||

: A oA
since - and A are graded) we get ¢, , = ¢, . O

As a consequence, we get that A is self-dual.

The cf;’l, are called Littlewood-Richardson coefficients. They have combinatorial interpreta-
tions, etc., but that’s another story.

3 What did we do this semester?

An ecclectic collection of combinatorics, classic and new.

Enumeration

T

Kreimer-style quantum field theory

/ aka stuff Karen does \

combinatorial
Dyson-Schwinger
equations

combinatorial
specifications

renormalization
Hopf algebras

Pdélya cycle
index polys

/

Algebra, representation theory

combinatorial
Hopf algebras

THE END!



